Section 14.7

Optimization in Several Variables

The 2nd Derivative Test
Local Extrema
The 2nd Derivative Test for $f(x, y)$
Why The Test Works (Optional)
Examples
Optimization In Three Or More Variables
(Optional)
Absolute Exrema
The Extreme Value Theorem
The Closed/Bounded Domain Method
Examples

1 The 2nd Derivative Test

Local and Absolute Extrema

Let $f(x, y)$ be a function of two variables, with domain D.
A point (a, b) in D is...

- a local maximum if $f(x, y) \leq f(a, b)$ for (x, y) near (a, b);
- a local minimum if $f(x, y) \geq f(a, b)$ for $(x, y) \underline{\text { near }}(a, b)$;
- an absolute maximum if $f(x, y) \leq f(a, b)$ for all (x, y) in D;
- an absolute minimum if $f(x, y) \geq f(a, b)$ for all (x, y) in D.

Some terminology:

- "extremum" (plural: "extrema") means "minimum or maximum"
- "Global" means the same thing as "absolute"

Critical Points

Fermat's Theorem

Suppose that $f(x, y)$ is differentiable and has a local extremum at (a, b). Then $f_{x}(a, b)=f_{y}(a, b)=0$. Equivalently, $\nabla f(a, b)=\overrightarrow{0}$.

Proof: Suppose $f(a, b)$ is a local maximum. Then $g(x)=f(x, b)$ has a local maximum at $x=a$. By Fermat's Theorem for 1 -variable functions, $g^{\prime}(a)=f_{x}(a, b)=0$; similarly $f_{y}(a, b)=0$.

Definition

If $\nabla f(a, b)=\overrightarrow{0}$, then the point (a, b) is called a critical point of f.

- All local extrema are critical points, but not all critical points are necessarily local extrema.
- As in Calculus I, we need a test to classify critical points as local maxima, local minima, or neither.

The Second Derivative Test

Let $f(x, y)$ be a function of two variables. The discriminant of f at a point (a, b) in the domain is

$$
D(a, b)=\left|\begin{array}{ll}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2} .
$$

Second Derivative Test

If (a, b) is a critical point of f and all second partials $f_{x x}, f_{x y}, f_{y y}$ are continuous near (a, b), then
(I) If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then (a, b) is a local minimum.
(II) If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then (a, b) is a local maximum.
(III) If $D(a, b)<0$, then (a, b) is a saddle point.
(IV) If $D(a, b)=0$, then the test is inconclusive.

The Second Derivative Test

$$
\begin{aligned}
& z=x^{2}+4 y^{2} \\
& \text { CP: } 0,0) \\
& D=\left|\begin{array}{ll}
2 & 0 \\
0 & 8
\end{array}\right|=16 \\
& D>0, f_{x x}>0
\end{aligned}
$$

local minimum

The Second Derivative Test: The Case $D=0$

$z=x^{2}+y^{4}$
CP: $(0,0)$
$D=\left|\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right|=0$
local minimum

$$
\begin{aligned}
& z=x^{2}+y^{3} \\
& \text { CP: }(0,0) \\
& D=\left|\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right|=0
\end{aligned}
$$

not a local extremum

Why The Test Works (Optional)

The second derivative test uses $2^{\text {nd }}$ degree Taylor polynomial approximation of the graph of the function at it's critical points to predict the shape of the graph.
> Link
For simplicity, consider the polynomial $f(x, y)=A x^{2}+B x y+C y^{2}$, which has a critical point at $(0,0)$.

- If $D=4 A C-B^{2}>0$, then the graph of f is an elliptic paraboloid, opening up (if $A, C>0$) or down (if $A, C<0$). Hence $(0,0)$ is a local extremum (min or max respectively). Note that A, C must have the same sign.
- If $D=4 A C-B^{2}<0$ (for example, if A and C have opposite signs) then the graph is a hyperbolic paraboloid, a.k.a. a saddle surface (or "Pringle"). Hence $(0,0)$ is a saddle point and not a local extremum.
- If $D=4 A C-B^{2}=0$, then $f(x, y)$ factors as a perfect square, and the graph is a cylinder over a parabola. Technically $(0,0)$ is a local extremum, but $f(x, y)$ has the same value along an entire line containing $(0,0)$.

Why The Test Works (Optional)

- The discriminant test uses the quadratic approximation $Q(x, y)$ of $f(x, y)$ - the quadric surface that fits its graph most closely.
- In fact, $Q(x, y)$ is a multivariable Taylor polynomial of degree 2 , with the same first and second partial derivatives as f, and therefore the same discriminant.
- If $D \neq 0$, then the third- and higher-order terms are insignificant and the critical point has the same behavior relative to Q as it does to f.
- If $D=0$, then the test is inconclusive - you need to look at higher-order terms (or do something else).

Example 1: Find and classify the critical points of

$$
f(x, y)=3 x^{2}-6 x y+5 y^{2}+y^{3}
$$

Solution: The critical points are those that satisfy $\nabla f(x, y)=\overrightarrow{0}$.

$$
\begin{gathered}
\nabla f(x, y)=\left\langle 6 x-6 y,-6 x+10 y+3 y^{2}\right\rangle \\
\left\{\begin{array}{rl}
6 x-6 y= & 0 \\
-6 x+10 y+3 y^{2}= & 0
\end{array} \quad \Longrightarrow \quad(x, y)=(0,0) \text { or }\left(-\frac{4}{3},-\frac{4}{3}\right)\right.
\end{gathered}
$$

Now use the Second Derivative Test to classify the critical points:

$$
D(x, y)=f_{x x} f_{y y}-\left[f_{x y}\right]^{2}=36 y+24
$$

	Second Deriv. Test		
Critical point	$\boldsymbol{D}(\boldsymbol{a}, \boldsymbol{b})$	$\boldsymbol{f}_{\boldsymbol{x x}}(\boldsymbol{a}, \boldsymbol{b})$	Classification
$(0,0)$	24	6	Local minimum
$\left(-\frac{4}{3},-\frac{4}{3}\right)$	-24		Saddle point

Optimization in Three Variables (Optional)

How do we find local extrema of a function $f(x, y, z)$ of three variables?

1. Find critical points. They are the solutions of the equation

$$
\nabla f(a, b, c)=0 \quad \text { or equivalently } \quad\left\{\begin{array}{l}
f_{x}(a, b, c)=0 \\
f_{y}(a, b, c)=0 \\
f_{z}(a, b, c)=0
\end{array}\right.
$$

2. Classify them. Now we need three discriminants:

$$
\begin{gathered}
D_{1}=f_{x x}(a, b, c) \\
D_{2}=\left|\begin{array}{lll}
f_{x x}(a, b, c) & f_{x y}(a, b, c) \\
f_{y x}(a, b, c) & f_{y y}(a, b, c)
\end{array}\right| \\
D_{3}=\left|\begin{array}{lll}
f_{x x}(a, b, c) & f_{x y}(a, b, c) & f_{x z}(a, b, c) \\
f_{y x}(a, b, c) & f_{y y}(a, b, c) & f_{y z}(a, b, c) \\
f_{z x}(a, b, c) & f_{z y}(a, b, c) & f_{z z}(a, b, c)
\end{array}\right|
\end{gathered}
$$

Optimization in Three or More Variables (Optional)

Second Derivative Test - Three Variables

If $P(a, b, c)$ is a critical point of f and all second partials are continuous near P, then
(I) If $\boldsymbol{D}_{1}>0, \boldsymbol{D}_{2}>0$, and $\boldsymbol{D}_{3}>0$, then P is a local minimum.
(II) If $D_{1}<0, \boldsymbol{D}_{2}>0$, and $\boldsymbol{D}_{3}<0$, then P is a local maximum.
(III) If $\boldsymbol{D}_{3} \neq 0$ but neither (I) nor (II) occurs, then P is not a local extrema.
(IV) If $\boldsymbol{D}_{3}=0$, then the test is inconclusive.

- To classify critical points of functions of n variables (Optional) Use discriminants $D_{1}, \ldots, D_{k}, \ldots, D_{n}$, which are $k \times k$ determinants
(1) All discriminants positive \Longrightarrow local minimum
(2) Alternating sign pattern starting with $D_{1}<0 \Longrightarrow$ local maximum

Optimization in Three Variables (Optional)

Example (Optional): Find and classify the critical points of the function

$$
f(x, y, z)=x^{3}+x^{2}+y^{2}+z^{2}+5 z
$$

Solution: The critical points are the solutions of $\nabla f(x, y, z)=\overrightarrow{0}$, i.e.,

$$
\left\{\begin{aligned}
3 x^{2}+2 x & =0 \\
2 y & =0 \\
2 z+5 & =0
\end{aligned} \quad \Longrightarrow \quad \begin{array}{l}
P(0,0,-5 / 2) \\
Q(-2 / 3,0,-5 / 2)
\end{array}\right.
$$

Matrix of second-order partials ("Hessian") and discriminants:

$$
\left[\begin{array}{ccc}
f_{x x} & f_{x y} & f_{x z} \\
f_{y x} & f_{y y} & f_{y z} \\
f_{z x} & f_{z y} & f_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
6 x+2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \quad \begin{aligned}
& D_{1}=6 x+2 \\
& D_{2}=12 x+4 \\
& D_{3}=24 x+8
\end{aligned}
$$

Optimization in Three Variables (Optional)

Example (continued):

$$
\begin{aligned}
& D_{1}=6 x+2 \\
& D_{2}=12 x+4 \\
& D_{3}=24 x+8
\end{aligned}
$$

Critical point	D_{1}	D_{2}	D_{3}	Sign pattern	Classification
$P(0,0,-5 / 2)$	2	4	8	+++	Local minimum
$Q(-2 / 3,0,-5 / 2)$	-2	-4	-8	---	Not a local extremum

2 Absolute Exrema

The Extreme Value Theorem

Extreme Value Theorem

If $z=f(x, y)$ is continuous on a closed and bounded set D in \mathbb{R}^{2}, then $f(x, y)$ attains an absolute maximum and an absolute minimum.

- "Closed" means that D contains all the points on its boundary.
- "Bounded" means that D does not go off to infinity in some direction.
(Disks are bounded; so is any set contained in some disk.)

The Closed/Bounded Domain Method

Extreme Value Theorem

If $z=f(x, y)$ is continuous on a closed and bounded set D in \mathbb{R}^{2}, then $f(x, y)$ attains an absolute maximum and an absolute minimum.

Closed/Bounded Domain Method to find absolute extrema:
(I) Find all critical points.
(II) Find the extrema of f on the boundary of D.
(III) The points found from (I) and (II) with the largest/smallest value(s) of f are the absolute extrema.

The Second Derivative test isn't required. However, step (II) can be very complicated!

The Closed/Bounded Domain Method

Example 2: Find the absolute extrema of $f(x, y)=x^{2}-4 x y+y^{2}$ on $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

Solution: (I) Find the critical points (a, b) in D :

$$
\nabla f(x, y)=\langle 2 x-4 y,-4 x+2 y\rangle
$$

$(0,0)$ is the only critical point.
(II) The boundary of D is the unit circle $x^{2}+y^{2}=1$, which can be parametrized $x=\cos (\theta), y=\sin (\theta), 0 \leq \theta \leq 2 \pi$.

$$
\begin{aligned}
g(\theta) & =f(\cos (\theta), \sin (\theta))=1-2 \sin (2 \theta) \\
g^{\prime}(\theta) & =-4 \cos (2 \theta)=0 \\
\theta & =k \pi / 4 \quad(k \text { odd })
\end{aligned}
$$

The Closed/Bounded Domain Method

Example 2 (cont'd): Find the absolute extrema of $f(x, y)=x^{2}-4 x y+y^{2}$ on $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

Solution: (III) Find the values of f at all critical points.

Critical point	Value of f	Classification
$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$	-1	absolute minimum
$\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$	3	absolute maximum
$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$	3	absolute maximum
$\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$	-1	absolute minimum
$(0,0)$	0	not an extremum

